login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215292
T(n,k)=Number of permutations of 0..floor((n*k-1)/2) on even squares of an nXk array such that each row and column of even squares is increasing
8
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 6, 10, 6, 1, 1, 10, 30, 30, 10, 1, 1, 20, 140, 280, 140, 20, 1, 1, 35, 420, 2100, 2100, 420, 35, 1, 1, 70, 2310, 23100, 60060, 23100, 2310, 70, 1, 1, 126, 6930, 210210, 1051050, 1051050, 210210, 6930, 126, 1, 1, 252, 42042, 2522520
OFFSET
1,5
COMMENTS
Table starts
.1...1.....1........1...........1..............1..................1
.1...2.....3........6..........10.............20.................35
.1...3....10.......30.........140............420...............2310
.1...6....30......280........2100..........23100.............210210
.1..10...140.....2100.......60060........1051050...........42882840
.1..20...420....23100.....1051050.......85765680.........5703417720
.1..35..2310...210210....42882840.....5703417720......2061378118800
.1..70..6930..2522520...814773960...577185873264....337653735859440
.1.126.42042.25729704.41227562376.48236247979920.173457547735792320
LINKS
FORMULA
f1=floor((k+1)/2)
f2=floor(k/2)
f3=floor((n+1)/2)
f4=floor(n/2)
T(n,k)=A060854(f1,f3)*A060854(f2,f4)*binomial(f1*f3+f2*f4,f1*f3)
EXAMPLE
Some solutions for n=5 k=4
..1..x..2..x....0..x..6..x....1..x..6..x....1..x..4..x....0..x..6..x
..x..0..x..4....x..3..x..4....x..0..x..3....x..0..x..3....x..1..x..2
..3..x..8..x....1..x..7..x....4..x..7..x....2..x..7..x....4..x..7..x
..x..6..x..7....x..5..x..8....x..2..x..8....x..5..x..6....x..3..x..9
..5..x..9..x....2..x..9..x....5..x..9..x....8..x..9..x....5..x..8..x
CROSSREFS
Column 2 is A001405
Sequence in context: A181039 A215297 A225910 * A124975 A171246 A129439
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Aug 07 2012
STATUS
approved