login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 3 X 3 X 3 triangular 0..n arrays with every horizontal row nondecreasing, first elements of rows nonincreasing, last elements of rows nondecreasing, and every row having the same average value.
1

%I #8 Jul 22 2018 12:32:05

%S 2,5,12,22,38,64,98,145,210,291,394,526,684,876,1110,1383,1704,2083,

%T 2516,3014,3588,4234,4964,5791,6710,7735,8880,10140,11530,13066,14742,

%U 16575,18582,20757,23118,25684,28448,31430,34650,38101,41804,45781,50024,54556

%N Number of 3 X 3 X 3 triangular 0..n arrays with every horizontal row nondecreasing, first elements of rows nonincreasing, last elements of rows nondecreasing, and every row having the same average value.

%C Row 3 of A215182.

%H R. H. Hardin, <a href="/A215183/b215183.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 2*a(n-1) - 3*a(n-4) + 3*a(n-6) - 2*a(n-9) + a(n-10).

%F Empirical g.f.: x*(2 + x + 2*x^2 - 2*x^3 + 3*x^5 - 2*x^8 + x^9) / ((1 - x)^5*(1 + x)*(1 + x + x^2)^2). - _Colin Barker_, Jul 22 2018

%e Some solutions for n=4:

%e ....1......3......2......2......1......1......3......0......2......3......4

%e ...1.1....3.3....1.3....2.2....0.2....0.2....3.3....0.0....1.3....3.3....4.4

%e ..1.1.1..3.3.3..0.3.3..2.2.2..0.1.2..0.0.3..1.4.4..0.0.0..1.1.4..2.3.4..4.4.4

%Y Cf. A215182.

%K nonn

%O 1,1

%A _R. H. Hardin_, Aug 05 2012