login
A215081
Smallest number k such that the difference between the greatest prime divisor and the smallest prime divisor of k equals n, or 0 if there is no such k.
0
2, 6, 15, 10, 21, 14, 55, 0, 33, 22, 39, 26, 85, 0, 51, 34, 57, 38, 115, 0, 69, 46, 203, 0, 145, 0, 87, 58, 93, 62, 259, 0, 185, 0, 111, 74, 205, 0, 123, 82, 129, 86, 235, 0, 141, 94, 371, 0, 265, 0, 159, 106, 413, 0, 295, 0, 177, 118, 183, 122, 469, 0, 335, 0
OFFSET
0,1
COMMENTS
a(A007921(n)) = 0 where A007921(n) are the numbers that are not the difference of two primes.
EXAMPLE
a(2) = 15 because 15 = 3*5 and 5 - 3 = 2.
MAPLE
with(numtheory):for n from 0 to 65 do:ii:=0:for k from 2 to 10000 while(ii=0) do:x:=factorset(k):n1:=nops(x):d:=x[n1] - x[1]:if d=n then ii:=1: printf("%a, ", k):else fi:od:if ii=0 then printf("%a, ", 0):else fi:od:
CROSSREFS
Cf. A007921.
Sequence in context: A297574 A349984 A375005 * A348592 A337737 A119416
KEYWORD
nonn
AUTHOR
Michel Lagneau, Aug 02 2012
STATUS
approved