login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214514
Numbers of the form p^2 + q^2 + r^2, where p, q, and r are primes.
3
12, 17, 22, 27, 33, 38, 43, 54, 57, 59, 62, 67, 75, 78, 83, 99, 102, 107, 123, 129, 134, 139, 147, 150, 155, 171, 174, 177, 179, 182, 187, 195, 198, 203, 219, 222, 227, 243, 246, 251, 267, 291, 294, 297, 299, 302, 307, 315, 318, 323, 339, 342, 347, 363, 369
OFFSET
1,1
MATHEMATICA
nn = 10^3; ps = Prime[Range[PrimePi[Sqrt[nn]]]]; t = Flatten[Table[ps[[i]]^2 + ps[[j]]^2 + ps[[k]]^2, {i, Length[ps]}, {j, i, Length[ps]}, {k, j, Length[ps]}]]; t = Select[t, # <= nn &]; Union[t]
PROG
(Python)
from sympy import primerange as primes
from itertools import takewhile, combinations_with_replacement as mc
def aupto(N):
psqs = list(takewhile(lambda x: x<=N, (p**2 for p in primes(1, N+1))))
sum3 = set(sum(c) for c in mc(psqs, 3) if sum(c) <= N)
return sorted(sum3)
print(aupto(369)) # Michael S. Branicky, Dec 17 2021
CROSSREFS
Cf. A045636 (two primes), A214515 (four primes).
Sequence in context: A154488 A336890 A302359 * A188004 A045699 A155096
KEYWORD
nonn
AUTHOR
T. D. Noe, Jul 29 2012
STATUS
approved