OFFSET
1,1
COMMENTS
Proof of the formula for T(n,k) is given in [Elnitsky].
So-called "generalized Narayana numbers" (see A145596), linking rhombus tilings of polygons to certain walks or paths through the square lattice.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows n = 1..150, flattened)
Serge Elnitsky, Rhombic tilings of polygons and classes of reduced words in Coxeter groups (preprint), J. Combin. Theory Ser. A, Vol. 77, Issue 2, 193-221 (1997).
L. E. Jeffery, Worked out example for A214457(1,1)=8
Tad White, Quota Trees, arXiv:2401.01462 [math.CO], 2024. See p. 20.
FORMULA
T(n,k) = 2*(n+k+1)!*(n+k+2)!/[n!*k!*(n+2)!*(k+2)!].
EXAMPLE
See [Jeffery]. T(1,1) = 8 because there are eight ways to tile the proposed octagon with rhombuses.
Table begins as
8 20 40 70 112 ...
20 75 210 490 1008 ...
40 210 784 2352 6048 ...
70 490 2352 8820 27720 ...
112 1008 6048 27720 76230 ...
...
MATHEMATICA
Table[2*(# + k + 1)!*(# + k + 2)!/(#!*k!*(# + 2)!*(k + 2)!) &[n - k + 1], {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, Feb 26 2024 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
L. Edson Jeffery, Jul 18 2012
STATUS
approved