login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = n!*S(n,k), where S(n,k) is the matrix inverse of the triangle zeta(k-n,1) - zeta(k-n,k+1), n>=1, k>=1.
0

%I #10 Jul 02 2013 09:30:50

%S 1,-1,1,1,-3,2,3,3,-12,6,-2,30,8,-60,24,-240,240,240,0,-360,120,-3900,

%T -540,4800,1800,-360,-2520,720,-15120,-112560,65520,70560,12600,-5880,

%U -20160,5040,2169888,-4284000,-756672,2076480,945504,70560,-80640,-181440,40320

%N Triangle read by rows: T(n,k) = n!*S(n,k), where S(n,k) is the matrix inverse of the triangle zeta(k-n,1) - zeta(k-n,k+1), n>=1, k>=1.

%D J. Faulhaber, Academia Algebrae, Darinnen die miraculosische inventiones zu den höchsten Cossen weiters continuirt und profitirt werden, Augspurg, bey Johann Ulrich Schönigs, 1631.

%e 1,

%e -1, 1,

%e 1, -3, 2,

%e 3, 3, -12, 6,

%e -2, 30, 8, -60, 24,

%e -240, 240, 240, 0, -360, 120,

%e -3900, -540, 4800, 1800, -360, -2520, 720.

%p with(linalg): S := proc(n) f := (n,k) -> `if`(k>n,0,Zeta(0,k-n,1)-Zeta(0,k-n,k+1)); inverse(matrix(n,n,f)) end: A214435_row := n -> n!*convert(row(S(n),n),list); for n from 1 to 9 do A214435_row(n) od;

%t max = 9; s = Table[ If[ k > n, 0, Zeta[k - n, 1] - Zeta[k - n, k + 1]], {n, 1, max}, {k, 1, max}] // Inverse; t[n_, k_] := n!*s[[n, k]]; Table[t[n, k], {n, 1, max}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jul 02 2013 *)

%Y Cf. A103438.

%K sign,tabl

%O 1,5

%A _Peter Luschny_, Jul 17 2012