OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..5000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,2,-2,0,0,-1,1).
FORMULA
G.f.: x * (1 + x + 2*x^2 + 7*x^3 + 2*x^4 + x^5 + x^6) / ((1 - x) * (1 - x^4)^2).
a(n) = 2*a(n-4) - a(n-8) + 15 = a(-1 - n).
MATHEMATICA
CoefficientList[Series[x*(1+x+2*x^2+7*x^3+2*x^4+x^5+x^6)/((1-x)*(1- x^4)^2), {x, 0, 50}], x] (* G. C. Greubel, Aug 10 2018 *)
Select[(Range[0, 500]^2-49)/120, IntegerQ] (* or *) LinearRecurrence[ {1, 0, 0, 2, -2, 0, 0, -1, 1}, {0, 1, 2, 4, 11, 15, 18, 23, 37}, 80] (* Harvey P. Dale, Oct 23 2019 *)
PROG
(PARI) {a(n) = (((n*3 + 1) \ 4 * 10 + 5 + 2*(-1)^n)^2 - 49) / 120 }
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1+x+2*x^2+7*x^3+2*x^4+x^5+x^6)/((1-x)*(1-x^4)^2))); // G. C. Greubel, Aug 10 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Jul 17 2012
STATUS
approved