login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Antidiagonal sums of the convolution array A213773.
3

%I #16 Jan 04 2022 20:58:52

%S 1,12,60,190,465,966,1792,3060,4905,7480,10956,15522,21385,28770,

%T 37920,49096,62577,78660,97660,119910,145761,175582,209760,248700,

%U 292825,342576,398412,460810,530265,607290,692416

%N Antidiagonal sums of the convolution array A213773.

%H Clark Kimberling, <a href="/A213818/b213818.txt">Table of n, a(n) for n = 1..299</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).

%F a(n) = (2*n - n^2 + 3*n^4)/4.

%F a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).

%F G.f.: f(x)/g(x), where f(x) = x*(1 + 7*x + 10*x^2) and g(x) = (1-x)^5.

%F a(n) = A000217(n) * A005448(n). - _John Elias_, Jan 04 2022

%t (See A213773.)

%Y Cf. A213773.

%K nonn,easy

%O 1,2

%A _Clark Kimberling_, Jul 04 2012