login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213709
Number of steps to go from 2^(n+1)-1 to (2^n)-1 using the iterative process described in A071542.
21
1, 1, 2, 3, 5, 9, 17, 30, 54, 98, 179, 330, 614, 1150, 2162, 4072, 7678, 14496, 27418, 51979, 98800, 188309, 359889, 689649, 1325006, 2552031, 4926589, 9529551, 18463098, 35815293, 69534171, 135069124, 262448803, 510047416, 991381433, 1927317745, 3747885517
OFFSET
0,3
COMMENTS
Also, apart from the first term a(0)=1, the number of terms in A179016 whose binary width is n+2 bits and whose second most significant bit is zero. For example, there is one term 4 (100) in three-bit range; two terms 8 (1000) and 11 (1011) in four bit range; three such terms: 16 (10000), 19 (10011) and 23 (10111) in five-bit range; five terms: 32, 35, 39, 42, 46 in six-bit range. This stems from the half-recursive nature of A179016, especially, that for all n >= 4, a(n) also gives the number of steps to go from (2^(n+1) + 2^n + 1) to 2^n using the iterative process described in A071542. Cf. also A226060. - Antti Karttunen, Jun 12 2013
Ratio a(n+1)/a(n) develops as: 1, 2, 1.5, 1.667..., 1.8, 1.889..., 1.765..., 1.8, 1.815..., 1.827..., 1.844..., 1.861..., 1.873..., 1.880..., 1.883..., 1.886..., 1.888..., 1.891..., 1.896..., 1.901..., 1.906..., 1.911..., 1.916..., 1.921..., 1.926..., 1.930..., 1.934..., 1.937..., 1.940..., 1.941..., 1.942..., 1.943..., 1.943..., 1.944..., 1.944..., 1.945..., 1.945..., 1.946..., 1.947..., 1.949..., 1.950..., 1.951..., 1.953..., 1.954..., 1.955..., 1.957..., 1.958... (which seem to converge slowly towards 2; see also comments at A218543).
LINKS
FORMULA
a(n) = A071542((2^(n+1))-1) - A071542((2^n)-1).
a(n) = A218542(n) + A218543(n) = A011782(n) - A213722(n).
EXAMPLE
(2^0)-1 (0) is reached from (2^1)-1 (1) with one step by subtracting A000120(1) from 1.
(2^1)-1 (1) is reached from (2^2)-1 (3) with one step by subtracting A000120(3) from 3.
(2^2)-1 (3) is reached from (2^3)-1 (7) with two steps by first subtracting A000120(7) from 7 -> 4, and then subtracting A000120(4) from 4 -> 3.
Thus a(0)=a(1)=1 and a(2)=2.
PROG
(MIT/GNU Scheme): (define (A213709 n) (- (A071542 (-1+ (expt 2 (1+ n)))) (A071542 (-1+ (expt 2 n)))))
CROSSREFS
First differences of A218600 and A213710. First differences of this sequence: A226060.
Analogous sequence for factorial number system: A219661.
Sequence in context: A326023 A326117 A319380 * A054187 A014743 A345234
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 26 2012
EXTENSIONS
More terms from Antti Karttunen, Jun 05 2013
STATUS
approved