login
A213676
Reversed Zeckendorf binary representation of natural numbers.
9
0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0
OFFSET
0
COMMENTS
T(n,k) = A189920(n, A072649(n, k)-1) for k = 0..A072649(k)-1, n > 0;
A000201 = row numbers starting with an even number of zeros;
for n > 0: A035614(n-1) = number of leading zeros of n-th row.
LINKS
EXAMPLE
The first rows:
. 0: [0]
. 1: [1]
. 2: [0,1]
. 3: [0,0,1]
. 4: [1,0,1]
. 5: [0,0,0,1]
. 6: [1,0,0,1]
. 7: [0,1,0,1]
. 8: [0,0,0,0,1]
. 9: [1,0,0,0,1]
. 10: [0,1,0,0,1]
. 11: [0,0,1,0,1]
. 12: [1,0,1,0,1].
PROG
(Haskell)
a213676 n k = a213676_tabf !! n !! k
a213676_row n = a213676_tabf !! n
a213676_tabf = [0] : map reverse a189920_tabf
CROSSREFS
Cf. A072649 (row lengths, n>0), A007895 (row sums).
Sequence in context: A078588 A175992 A173922 * A309752 A209355 A141743
KEYWORD
nonn,tabf
AUTHOR
Reinhard Zumkeller, Mar 10 2013
STATUS
approved