login
A213600
Triangle T(n,k) read by rows: Number of Dyck n-paths with midpoint at height k.
1
1, 0, 1, 1, 0, 1, 0, 4, 0, 1, 4, 0, 9, 0, 1, 0, 25, 0, 16, 0, 1, 25, 0, 81, 0, 25, 0, 1, 0, 196, 0, 196, 0, 36, 0, 1, 196, 0, 784, 0, 400, 0, 49, 0, 1, 0, 1764, 0, 2304, 0, 729, 0, 64, 0, 1, 1764, 0, 8100, 0, 5625, 0, 1225, 0, 81, 0, 1, 0, 17424, 0, 27225, 0, 12100, 0
OFFSET
0,8
FORMULA
T(n,k) = A053121(n,k)^2.
EXAMPLE
Triangle T(n,k) begins:
1
0 1
1 0 1
0 4 0 1
4 0 9 0 1
0 25 0 16 0 1
25 0 81 0 25 0 1
0 196 0 196 0 36 0 1
196 0 784 0 400 0 49 0 1
0 1764 0 2304 0 729 0 64 0 1
1764 0 8100 0 5625 0 1225 0 81 0 1
...
CROSSREFS
Row sums give A000108.
T(2n,0) gives A001246.
T(2n,2) gives A338727(n) for n>=1.
Cf. A053121.
Sequence in context: A292143 A350824 A281441 * A178104 A172545 A124321
KEYWORD
nonn,tabl
AUTHOR
David Scambler, Jun 14 2012
STATUS
approved