login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213484
Number of (w,x,y) with all terms in {0,...,n} and |w-x| + |x-y| + |y-w| >= w+x+y.
3
1, 4, 7, 10, 16, 25, 34, 43, 55, 70, 85, 100, 118, 139, 160, 181, 205, 232, 259, 286, 316, 349, 382, 415, 451, 490, 529, 568, 610, 655, 700, 745, 793, 844, 895, 946, 1000, 1057, 1114, 1171, 1231, 1294, 1357, 1420, 1486, 1555, 1624, 1693, 1765
OFFSET
0,2
COMMENTS
a(n) + A213485(n) = (n+1)^3.
For a guide to related sequences, see A212959.
FORMULA
a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5).
G.f.: (1 + x - x^2 + x^3 + x^4)/((1 - x)^3 (1 + x^2)).
From Ayoub Saber Rguez, Dec 31 2021: (Start)
a(n) + A213485(n) = (n+1)^3.
a(n) = 3*A054925(n+1) + 1.
a(n) = 3*(A192447(n+1)/2) + 1.
a(n) = (3*n^2 + 3*n + 4 + 3*((n+1) mod 4 - (n+1) mod 2))/4. (End)
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w + x + y == Abs[w - x] + Abs[x - y] + Abs[y - w],
s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
Map[t[#] &, Range[0, 60]] (* A213484 *)
CROSSREFS
Cf. A212959.
Sequence in context: A310713 A180080 A153003 * A362255 A128429 A191154
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 13 2012
STATUS
approved