login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213018
Largest possible right-truncatable base n semiprime, written in decimal notation.
2
349859, 96614184696363331, 21453921664462866568480385, 5396625577204731352098054139, 1230847457959658263441326143300761, 95861957783594714393831931415189937897, 246968512564969427282294385793684699270364003, 2275670244821939317343219562642735197101789412250091, 452359410421075824795509870868069265597540337861667320077
OFFSET
5,1
COMMENTS
For the definition of a right-truncatable semiprime, see A213017. The process of truncating at the right end of the digit string has to be applied to the base-n representation given in the examples. a(10) was found by S.S. Gupta. All other terms have been computed by Hermann Jurksch.
EXAMPLE
a(5)=349859=42143414 in base 5 = 89*3931
4214341 in base 5 = 69971 = 11*6361
421434 in base 5 = 13994 = 2*6997
42143 in base 5 = 2798 = 2*1399
4214 in base 5 = 559 = 13*43
421 in base 5 = 111 = 3*37
42 in base 5 = 22 = 2*11
4 in base 5 = 4 = 2*2
a(6)=4223145115415551545111 in base 6
a(7)=644324264233631242462662622646 in base 7
a(8)=4267773725372537135533515117773 in base 8
a(9)=43741424882428682844851886888222774 in base 9
a(10)=95861957783594714393831931415189937897 in base 10
a(11)=4567476a2738a828994aa851a116aa886a95686a231 in base 11
a(12)=43a2971ba155719171a2b1b97777775b779a732b755572b7 in base 12
a(13)=9114448462c6c46b3c9937446466b43686a24668666732c4356 in base 13
PROG
(Python)
from sympy import factorint
def fromdigits(t, b): return sum(b**i*di for i, di in enumerate(t[::-1]))
def semiprime(n): return sum(factorint(n).values()) == 2
def a(n):
m, s = 0, [(i, ) for i in range(n) if semiprime(fromdigits((i, ), n))]
while len(s) > 0:
m = fromdigits(max(s), n)
cands = set(t+(d, ) for t in s for d in tuple(range(n)))
s = [c for c in cands if semiprime(fromdigits(c, n))]
return m
print([a(n) for n in range(5, 8)]) # Michael S. Branicky, Aug 04 2022
CROSSREFS
KEYWORD
nonn,base,hard
AUTHOR
Hugo Pfoertner, Jun 26 2012
STATUS
approved