login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212916
Number of standard Young tableaux of n cells and height <= 10.
7
1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, 35695, 140140, 568360, 2389192, 10338315, 46118592, 211120144, 992316928, 4773362476, 23500234512, 118125854560, 606106812640, 3168660576795, 16872323635132, 91369920670420, 503022250919640, 2811920834508705
OFFSET
0,3
COMMENTS
Number of standard Young tableaux of n cells and <= 10 columns.
Also the number of n-length words w over 10-ary alphabet {a1,a2,...,a10} such that for every prefix z of w we have #(z,a1) >= #(z,a2) >= ... >= #(z,a10), where #(z,x) counts the letters x in word z.
Conjecture: generally (for tableaux with height <= k), a(n) ~ k^n/Pi^(k/2) * (k/n)^(k*(k-1)/4) * prod(j=1..k,Gamma(j/2)); set k=10 for this sequence. - Vaclav Kotesovec, Sep 12 2013
LINKS
FORMULA
a(n) ~ 42525/32 * 10^(n+45/2)/(Pi^(5/2)*n^(45/2)). - Vaclav Kotesovec, Sep 11 2013
MAPLE
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) option remember;
`if`(n=0, h(l), `if`(i=1, h([l[], 1$n]), `if`(i<1, 0,
g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [l[], i])))))
end:
a:= n-> g(n, 10, []):
seq(a(n), n=0..30);
# second Maple program:
a:= proc(n) option remember;
`if`(n<6, [1, 1, 2, 4, 10, 26][n+1],
((70*n^4+4144*n^3+84986*n^2+685800*n+1656000)*a(n-1)
+4*(n-1)*(35*n^4+1778*n^3+30106*n^2+184221*n+244350)*a(n-2)
-8*(n-1)*(n-2)*(518*n^2+11916*n+59265)*a(n-3)
-16*(n-1)*(n-2)*(n-3)*(259*n^2+4819*n+17355)*a(n-4)
+21600*(n-1)*(n-2)*(n-3)*(n-4)*a(n-5)
+14400*(n-5)*(n-1)*(n-2)*(n-3)*(n-4)*a(n-6)) /
((n+21)*(n+9)*(n+16)*(n+25)*(n+24)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Oct 12 2012
MATHEMATICA
Flatten[{1, RecurrenceTable[{-14400 (-5+n) (-4+n) (-3+n) (-2+n) (-1+n) a[-6+n]-21600 (-4+n) (-3+n) (-2+n) (-1+n) a[-5+n]+16 (-3+n) (-2+n) (-1+n) (17355+4819 n+259 n^2) a[-4+n]+8 (-2+n) (-1+n) (59265+11916 n+518 n^2) a[-3+n]-4 (-1+n) (244350+184221 n+30106 n^2+1778 n^3+35 n^4) a[-2+n]-2 (828000+342900 n+42493 n^2+2072 n^3+35 n^4) a[-1+n]+(9+n) (16+n) (21+n) (24+n) (25+n) a[n]==0, a[1]==1, a[2]==2, a[3]==4, a[4]==10, a[5]==26, a[6]==76}, a, {n, 20}]}] (* Vaclav Kotesovec, Sep 11 2013 *)
CROSSREFS
Column k=10 of A182172.
Sequence in context: A239080 A212915 A239081 * A239082 A229053 A229068
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 30 2012
STATUS
approved