Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Dec 16 2017 05:05:42
%S 1,1,2,4,10,26,76,232,764,2620,9495,35685,140031,567503,2382394,
%T 10290308,45780063,208852719,977152266,4674398032,22854255698,
%U 113957313538,579157509082,2995214721530,15752586526189,84145056172981,456221504976506,2508227921637772
%N Number of standard Young tableaux of n cells and height <= 9.
%C Number of standard Young tableaux of n cells and <= 9 columns.
%C Also the number of n-length words w over 9-ary alphabet {a1,a2,...,a9} such that for every prefix z of w we have #(z,a1) >= #(z,a2) >= ... >= #(z,a9), where #(z,x) counts the letters x in word z.
%H Alois P. Heinz, <a href="/A212915/b212915.txt">Table of n, a(n) for n = 0..1000</a>
%H Juan B. Gil, Peter R. W. McNamara, Jordan O. Tirrell, Michael D. Weiner, <a href="https://arxiv.org/abs/1708.00513">From Dyck paths to standard Young tableaux</a>, arXiv:1708.00513 [math.CO], 2017.
%F a(n) ~ 14175/256 * 9^(n+18)/(Pi^2*n^18). - _Vaclav Kotesovec_, Sep 11 2013
%p h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j+
%p add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
%p end:
%p g:= proc(n, i, l) option remember;
%p `if`(n=0, h(l), `if`(i=1, h([l[], 1$n]), `if`(i<1, 0,
%p g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [l[], i])))))
%p end:
%p a:= n-> g(n, 9, []):
%p seq(a(n), n=0..30);
%p # second Maple program:
%p a:= proc(n) option remember;
%p `if`(n<5, [1, 1, 2, 4, 10][n+1],
%p ((5*n^4+230*n^3+3574*n^2+20663*n+29393)*a(n-1)
%p +7*(n-1)*(10*n^3+266*n^2+1919*n+2713)*a(n-2)
%p -(n-1)*(n-2)*(230*n^2+3934*n+13587)*a(n-3)
%p -3*(n-1)*(n-2)*(n-3)*(263*n+1414)*a(n-4)
%p +945*(n-1)*(n-2)*(n-3)*(n-4)*a(n-5)) /
%p ((n+20)*(n+8)*(n+18)*(n+14)))
%p end:
%p seq(a(n), n=0..30); # _Alois P. Heinz_, Oct 12 2012
%t Flatten[{1,RecurrenceTable[{-945 (-4+n) (-3+n) (-2+n) (-1+n) a[-5+n]+3 (-3+n) (-2+n) (-1+n) (1414+263 n) a[-4+n]+(-2+n) (-1+n) (13587+3934 n+230 n^2) a[-3+n]-7 (-1+n) (2713+1919 n+266 n^2+10 n^3) a[-2+n]+(-29393-20663 n-3574 n^2-230 n^3-5 n^4) a[-1+n]+(8+n) (14+n) (18+n) (20+n) a[n]==0,a[1]==1,a[2]==2,a[3]==4,a[4]==10,a[5]==26}, a, {n, 20}]}] (* _Vaclav Kotesovec_, Sep 11 2013 *)
%Y Column k=9 of A182172.
%K nonn
%O 0,3
%A _Alois P. Heinz_, May 30 2012