login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212763
Number of (w,x,y,z) with all terms in {0,...,n}, and w, x and y odd.
3
0, 2, 3, 32, 40, 162, 189, 512, 576, 1250, 1375, 2592, 2808, 4802, 5145, 8192, 8704, 13122, 13851, 20000, 21000, 29282, 30613, 41472, 43200, 57122, 59319, 76832, 79576, 101250, 104625, 131072, 135168, 167042, 171955, 209952, 215784
OFFSET
0,2
COMMENTS
For a guide to related sequences, see A211795.
FORMULA
a(n) = a(n-1) +4*a(n-2) -4*a(n-3) -6*a(n-4) +6*a(n-5) +4*a(n-6) -4*a(n-7) -a(n-8) +a(n-9).
G.f.: x*(2+x+21*x^2+4*x^3+18*x^4+x^5+x^6) / ( (1+x)^4*(1-x)^5 ).
a(n) = (n+1)*(2*n^3+3*n^2+3*n+1-(3*n^2+3*n+1)*(-1)^n)/16. - Luce ETIENNE, Oct 01 2015
a(n) = A212759(-n-2). [Bruno Berselli, Oct 01 2015]
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[(Mod[w, 2] == 1) && (Mod[x, 2] == 1) && (Mod[y, 2] == 1), s++], {w, 0, n}, {x, 0, n}, {y, 0, n}, {z, 0, n}]; s)]];
Map[t[#] &, Range[0, 50]] (* A212763 *)
LinearRecurrence[{1, 4, -4, -6, 6, 4, -4, -1, 1}, {0, 2, 3, 32, 40, 162, 189, 512, 576}, 45]
PROG
(PARI) a(n) = (n+1)*(2*n^3+3*n^2+3*n+1-(3*n^2+3*n+1)*(-1)^n)/16;
vector(100, n, a(n-1)) \\ Altug Alkan, Oct 01 2015
CROSSREFS
Sequence in context: A032815 A176894 A041053 * A103108 A107124 A141049
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 29 2012
STATUS
approved