login
A212402
T(n,k)=Number of binary arrays of length n+2*k-1 with no more than k ones in any length 2k subsequence (=50% duty cycle)
11
3, 11, 5, 42, 19, 8, 163, 74, 33, 13, 638, 291, 132, 57, 21, 2510, 1150, 527, 236, 97, 34, 9908, 4558, 2104, 959, 421, 166, 55, 39203, 18100, 8402, 3872, 1747, 747, 285, 89, 155382, 71971, 33560, 15586, 7143, 3179, 1314, 489, 144, 616666, 286454, 134075
OFFSET
1,1
COMMENTS
Table starts
..3..11...42...163...638...2510...9908...39203...155382...616666...2449868
..5..19...74...291..1150...4558..18100...71971...286454..1140954...4547020
..8..33..132...527..2104...8402..33560..134075...535728..2140910...8556568
.13..57..236...959..3872..15586..62632..251419..1008536..4043582..16206152
.21..97..421..1747..7143..29002.117290..473171..1905675..7665886..30810054
.34.166..747..3179.13185..54042.220054..892387..3609005.14567294..58714842
.55.285.1314..5769.24322.100736.413220.1685039..6844362.27724036.112072540
.89.489.2318.10425.44794.187696.776116.3183631.12990818.52815156.214150732
LINKS
EXAMPLE
Some solutions for n=3 k=4
..0....0....0....1....0....0....0....0....1....1....1....0....1....0....1....1
..1....0....1....1....0....0....1....0....1....1....0....1....1....1....0....0
..1....1....1....0....1....0....1....0....1....0....1....0....0....0....0....0
..0....1....1....0....1....0....1....0....0....1....0....1....1....0....1....0
..1....0....0....0....1....1....1....1....0....0....1....0....0....1....0....0
..0....0....0....1....0....1....0....0....0....0....0....0....0....0....1....0
..0....0....0....0....0....0....0....0....0....0....0....0....0....1....1....1
..0....1....1....0....0....1....0....1....0....1....1....0....1....0....0....1
..0....0....0....1....0....1....0....1....1....1....1....1....0....0....0....1
..1....0....0....1....1....0....0....0....1....1....0....1....0....0....1....1
CROSSREFS
Column 1 is A000045(n+3)
Column 2 is A118647(n+3)
Column 3 is A133551(n+5)
Row 1 is A032443
Sequence in context: A139686 A212782 A130537 * A114234 A352005 A242223
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin May 14 2012
STATUS
approved