login
A212369
Number of Dyck n-paths all of whose ascents and descents have lengths equal to 1 (mod 10).
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 68, 85, 112, 156, 226, 333, 490, 712, 1016, 1421, 1949, 2630, 3512, 4676, 6256, 8464, 11620, 16187, 22811, 32366, 46005, 65225, 91967, 128786, 179140, 247861, 341885, 471332, 651041, 902679
OFFSET
0,12
LINKS
FORMULA
G.f. satisfies: A(x) = 1+A(x)*(x-x^10*(1-A(x))).
a(n) = a(n-1) + Sum_{k=1..n-10} a(k)*a(n-10-k) if n>0; a(0) = 1.
EXAMPLE
a(0) = 1: the empty path.
a(1) = 1: UD.
a(11) = 2: UDUDUDUDUDUDUDUDUDUDUD, UUUUUUUUUUUDDDDDDDDDDD.
a(12) = 4: UDUDUDUDUDUDUDUDUDUDUDUD, UDUUUUUUUUUUUDDDDDDDDDDD, UUUUUUUUUUUDDDDDDDDDDDUD, UUUUUUUUUUUDUDDDDDDDDDDD.
MAPLE
a:= proc(n) option remember;
`if`(n=0, 1, a(n-1) +add(a(k)*a(n-10-k), k=1..n-10))
end:
seq(a(n), n=0..60);
# second Maple program:
a:= n-> coeff(series(RootOf(A=1+A*(x-x^10*(1-A)), A), x, n+1), x, n):
seq(a(n), n=0..60);
MATHEMATICA
With[{k = 10}, CoefficientList[Series[(1 - x + x^k - Sqrt[(1 - x + x^k)^2 - 4*x^k]) / (2*x^k), {x, 0, 50}], x]] (* Vaclav Kotesovec, Sep 02 2014 *)
CROSSREFS
Column k=10 of A212363.
Sequence in context: A025739 A000124 A152947 * A212368 A217838 A212367
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 10 2012
STATUS
approved