login
Number of ways to place k non-attacking wazirs on an n x n cylindrical chessboard, summed over all k >= 0.
5

%I #25 May 22 2021 01:07:58

%S 2,7,43,933,36211,3557711,746156517,363549830913,394677987525997,

%T 974602314570939359,5418730454986467701985,68176187476467835406646029,

%U 1936241516342334422813929891295,124281423643836238320564876791634465,18018270577720149773239661332878801006033

%N Number of ways to place k non-attacking wazirs on an n x n cylindrical chessboard, summed over all k >= 0.

%C Wazir is a leaper [0,1].

%H Vaclav Kotesovec, <a href="/A212270/b212270.txt">Table of n, a(n) for n = 1..32</a>

%H V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Non-attacking chess pieces</a>, 6ed, 2013, p.414

%F Limit n ->infinity (a(n))^(1/n^2) is the hard square entropy constant A085850.

%Y Main diagonal of A286513.

%Y Cf. A006506, A027683, A182407, A212269, A212271.

%K nonn,hard

%O 1,1

%A _Vaclav Kotesovec_, May 12 2012