login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211549
Number of (n+1) X (n+1) -9..9 symmetric matrices with every 2 X 2 subblock having sum zero and one or two distinct values.
1
31, 43, 61, 91, 139, 217, 343, 547, 877, 1411, 2275, 3673, 5935, 9595, 15517, 25099, 40603, 65689, 106279, 171955, 278221, 450163, 728371, 1178521, 1906879, 3085387, 4992253, 8077627, 13069867, 21147481, 34217335, 55364803, 89582125, 144946915
OFFSET
1,1
COMMENTS
Symmetry and 2 X 2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j) = (x(i,i)+x(j,j))/2*(-1)^(i-j).
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) - a(n-3).
Empirical g.f.: x*(31 - 19*x - 25*x^2) / ((1 - x)*(1 - x - x^2)). - Colin Barker, Jul 19 2018
EXAMPLE
Some solutions for n=3:
..9.-3..3.-9....3.-3..3.-3...-1.-1.-1..1....7.-7..7.-7....2.-2..2.-2
.-3.-3..3..3...-3..3.-3..3...-1..3.-1..1...-7..7.-7..7...-2..2.-2..2
..3..3.-3.-3....3.-3..3.-3...-1.-1.-1..1....7.-7..7.-7....2.-2..2.-2
.-9..3.-3..9...-3..3.-3..3....1..1..1.-1...-7..7.-7..7...-2..2.-2..2
CROSSREFS
Sequence in context: A317851 A304239 A069455 * A118637 A096163 A139883
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 15 2012
STATUS
approved