login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211165
Number of ways to write n as the sum of a prime p with p-1 and p+1 both practical, a prime q with q+2 also prime, and a Fibonacci number.
2
0, 0, 0, 0, 0, 1, 1, 3, 3, 4, 5, 3, 5, 3, 4, 4, 3, 4, 4, 4, 6, 6, 8, 6, 8, 3, 7, 3, 6, 5, 5, 5, 7, 6, 11, 8, 12, 4, 8, 4, 7, 8, 6, 8, 8, 7, 11, 9, 13, 5, 8, 4, 7, 7, 6, 6, 6, 5, 7, 6, 10, 4, 9, 3, 9, 7, 8, 7, 6, 6, 7, 4, 7, 4, 7, 4, 8, 8, 11, 7, 6, 6, 8, 5, 6, 4, 7, 2, 9, 7, 12, 8, 7, 4, 10, 5, 9, 5, 8, 5
OFFSET
1,8
COMMENTS
Conjecture: a(n)>0 for all n>5.
This has been verified for n up to 300000.
Note that for n=406 we cannot represent n in the given way with q+1 practical.
LINKS
G. Melfi, On two conjectures about practical numbers, J. Number Theory 56 (1996) 205-210 [MR96i:11106].
Zhi-Wei Sun, New Goldbach-type conjectures involving primes and practical numbers, a message to Number Theory List, Jan. 29, 2013.
Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588 [math.NT], 2012-2017.
EXAMPLE
a(6)=a(7)=1 since 6=3+3+0 and 7=3+3+1 with 3 and 5 both prime, 2 and 4 both practical, 0 and 1 Fibonacci numbers.
MATHEMATICA
f[n_]:=f[n]=FactorInteger[n]
Pow[n_, i_]:=Pow[n, i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2])
Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}]
pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0)
pp[k_]:=pp[k]=pr[Prime[k]-1]==True&&pr[Prime[k]+1]==True
q[n_]:=q[n]=PrimeQ[n]==True&&PrimeQ[n+2]==True
a[n_]:=a[n]=Sum[If[k!=2&&Fibonacci[k]<n&&pp[j]==True&&q[n-Fibonacci[k]-Prime[j]]==True, 1, 0], {k, 0, 2*Log[2, n]}, {j, 1, PrimePi[n-Fibonacci[k]]}]
Do[Print[n, " ", a[n]], {n, 1, 100}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 30 2013
STATUS
approved