OFFSET
1,2
COMMENTS
Row n lists the partial sums of row n of triangle A066633.
LINKS
Alois P. Heinz, Rows n = 1..141, flattened
FORMULA
T(n,k) = Sum_{j=1..k} A066633(n,j).
EXAMPLE
Triangle begins:
1;
2, 3;
4, 5, 6;
7, 10, 11, 12;
12, 16, 18, 19, 20;
19, 27, 31, 33, 34, 35;
30, 41, 47, 50, 52, 53, 54;
45, 64, 73, 79, 82, 84, 85, 86;
67, 93, 108, 116, 121, 124, 126, 127, 128;
MAPLE
p:= (f, g)-> zip((x, y)-> x+y, f, g, 0):
b:= proc(n, i) option remember; local f, g;
if n=0 then [1]
elif i=1 then [1, n]
else f:= b(n, i-1); g:= `if`(i>n, [0], b(n-i, i));
p (p (f, g), [0$i, g[1]])
fi
end:
T:= proc(n, k) option remember;
b(n, n)[k+1] +`if`(k<2, 0, T(n, k-1))
end:
seq (seq (T(n, k), k=1..n), n=1..11); # Alois P. Heinz, May 02 2012
MATHEMATICA
p[f_, g_] := With[{m = Max[Length[f], Length[g]]}, PadRight[f, m, 0] + PadRight[g, m, 0]]; b[n_, i_] := b[n, i] = Module[{f, g}, If[n == 0, {1}, If[i == 1, {1, n}, f = b[n, i-1]; g = If[i>n, {0}, b[n-i, i]]; p[p[f, g], Append[Array[0&, i], g[[1]] ]]]]]; T[n_, k_] := T[n, k] = b[n, n][[k+1]] + If[k<2, 0, T[n, k-1]]; Table [Table [T[n, k], {k, 1, n}], {n, 1, 11}] // Flatten (* Jean-François Alcover, Mar 11 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Omar E. Pol, May 01 2012
STATUS
approved