login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210515
Numbers N such that concatenation of N, N, and x generates a prime for x=1 and x=3 and x=7 and x=9.
0
1235, 4061, 8255, 22775, 24665, 36500, 44501, 52343, 54434, 57644, 58109, 59567, 59588, 65018, 69407, 71789, 78689, 94280, 98594, 106748, 114272, 122504, 134369, 137129, 138905, 144302, 162236, 196439, 235808, 238235, 269912, 277919, 278633, 282461, 290534
OFFSET
1,1
COMMENTS
The primes generated are part of the sequences A210511, A210512, A210513 and A210514.
MATHEMATICA
Select[Range[3*10^5], AllTrue[FromDigits/@Table[Join[IntegerDigits[#], IntegerDigits [#], {n}], {n, {1, 3, 7, 9}}], PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 07 2021 *)
PROG
(Python)
import numpy as np
from functools import reduce
def factors(n):
return reduce(list.__add__, ([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0))
for i in range(1, 50000):
p1=int(str(i)+str(i)+"1")
p3=int(str(i)+str(i)+"3")
p7=int(str(i)+str(i)+"7")
p9=int(str(i)+str(i)+"9")
if len(factors(p1))<3 and len(factors(p3))<3 and len(factors(p7))<3 and len(factors(p9))<3:
print(i, end=', ')
CROSSREFS
KEYWORD
base,nonn,easy
AUTHOR
Abhiram R Devesh, Jan 26 2013
STATUS
approved