OFFSET
1,6
COMMENTS
Conjecture: a(n)>0 for all n>3.
This is stronger than Goldbach's conjecture and the author's conjecture that any odd number greater than one is the sum of a prime and a practical number. Also, it implies that there are infinitely many primes p with p-1 and p+1 both practical.
The author has verified this new conjecture for n up to 10^7.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..60000
G. Melfi, On two conjectures about practical numbers, J. Number Theory 56 (1996) 205-210 [MR96i:11106].
Zhi-Wei Sun, Sandwiches with primes and practical numbers, a message to Number Theory List, Jan. 13, 2013.
Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588 [math.NT], 2012-2017.
EXAMPLE
a(1846)=1 since 1846=1289+557 with 1289 and 557 both prime, and 1288 and 1290 both practical.
a(15675)=1 since 15675=919+14756 with 919 prime, and 918, 920, 14756 all practical.
MATHEMATICA
f[n_]:=f[n]=FactorInteger[n]
Pow[n_, i_]:=Pow[n, i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2])
Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}]
pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0)
a[n_]:=a[n]=Sum[If[pr[Prime[k]-1]==True&&pr[Prime[k]+1]==True&&(PrimeQ[n-Prime[k]]==True||pr[n-Prime[k]]==True), 1, 0], {k, 1, PrimePi[n-1]}]
Do[Print[n, " ", a[n]], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 23 2013
STATUS
approved