login
A210373
Number of 2 X 2 matrices with all elements in {0,1,...,n} and positive odd determinant.
4
0, 3, 8, 48, 84, 243, 360, 768, 1040, 1875, 2400, 3888, 4788, 7203, 8624, 12288, 14400, 19683, 22680, 30000, 34100, 43923, 49368, 62208, 69264, 85683, 94640, 115248, 126420, 151875, 165600
OFFSET
0,2
COMMENTS
See A210000 for a guide to related sequences.
LINKS
FORMULA
From Chai Wah Wu, Nov 27 2016: (Start)
a(n) = A210370(n)/2.
a(n) = (2*n + 1 -(-1)^n)^2*(6*n + 5 -(-1)^n)*(2*n + 3 + (-1)^n)/256
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n > 8.
G.f.: -x*(3*x^5 + 17*x^4 + 16*x^3 + 28*x^2 + 5*x + 3)/((x - 1)^5*(x + 1)^4). (End)
MATHEMATICA
a = 0; b = n; z1 = 30;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
u[n_] := u[n] = Sum[c[n, 2 k], {k, 0, n^2}]
v[n_] := v[n] = Sum[c[n, 2 k], {k, 1, n^2}]
w[n_] := w[n] = Sum[c[n, 2 k - 1], {k, 1, n^2}]
Table[u[n], {n, 0, z1}] (* A210371 *)
Table[v[n], {n, 0, z1}] (* A210372 *)
Table[w[n], {n, 0, z1}] (* A210373 *)
CROSSREFS
Cf. A210000.
Sequence in context: A040018 A019016 A063859 * A247033 A309578 A291504
KEYWORD
nonn
AUTHOR
Clark Kimberling, Mar 20 2012
STATUS
approved