login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210121
Number of (n+1)X5 0..3 arrays with every 2X2 subblock having two or four distinct values, and new values 0..3 introduced in row major order
1
1702, 67585, 2737637, 112952832, 4697571356, 196165653701, 8207720539895, 343746384294748, 14403093376772686, 603631646240869795, 25300922171612628613, 1060533143275058597698, 44455313278746271463860
OFFSET
1,1
COMMENTS
Column 4 of A210125
LINKS
FORMULA
Empirical: a(n) = 141*a(n-1) -8198*a(n-2) +253738*a(n-3) -4335309*a(n-4) +32611874*a(n-5) +157688600*a(n-6) -5437672761*a(n-7) +36928322026*a(n-8) +83941972327*a(n-9) -2464848791357*a(n-10) +9124034875173*a(n-11) +44643161090659*a(n-12) -414287245723988*a(n-13) +262608188246587*a(n-14) +7036524500964441*a(n-15) -20010090198986748*a(n-16) -50185720102385860*a(n-17) +297025017732022298*a(n-18) -12166482614864127*a(n-19) -2113652091258962343*a(n-20) +2578106152249137798*a(n-21) +7413880335295292258*a(n-22) -16987198032741714548*a(n-23) -8671411692524928056*a(n-24) +47832952152931113904*a(n-25) -14816478656035432480*a(n-26) -59506249302871243584*a(n-27) +41824818916778774144*a(n-28) +31132444427347390464*a(n-29) -30477970804737948672*a(n-30) -6891809323783357440*a(n-31) +8557544201912217600*a(n-32) +775832334266744832*a(n-33) -874925791882149888*a(n-34) -47572976371728384*a(n-35) +24066999773429760*a(n-36)
EXAMPLE
Some solutions for n=4
..0..0..1..0..0....0..1..0..0..0....0..0..0..1..2....0..0..0..0..0
..2..0..0..0..2....0..1..1..0..2....0..2..2..3..0....1..1..1..0..1
..0..0..1..1..3....1..1..2..3..1....0..0..2..2..1....0..0..0..0..0
..0..2..3..1..1....2..1..1..0..2....2..0..2..3..0....1..1..0..1..0
..3..1..0..2..2....2..1..3..2..0....0..0..0..1..2....0..1..0..0..0
CROSSREFS
Sequence in context: A263344 A159464 A166400 * A345506 A345782 A157287
KEYWORD
nonn
AUTHOR
R. H. Hardin Mar 17 2012
STATUS
approved