login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210116
Floor of the expected value of number of trials until exactly five cells are empty in a random distribution of n balls in n cells.
5
7776, 311, 51, 16, 7, 4, 3, 3, 2, 3, 3, 4, 5, 8, 11, 16, 25, 40, 66, 110, 187, 325, 574, 1032, 1885, 3492, 6557, 12467, 23988, 46667, 91731, 182078, 364734, 736972, 1501318, 3082136, 6374007, 13273719, 27825438, 58697777, 124566798
OFFSET
6,1
COMMENTS
Also floor of the expected value of number of trials until we have n-5 distinct symbols in a random sequence on n symbols of length n. A055775 corresponds to zero cells empty.
REFERENCES
W. Feller, An Introduction to Probability Theory and its Applications, 2nd ed, Wiley, New York, 1965, (2.4) p. 92. (Occupancy problems)
FORMULA
With m = 5, a(n) = floor(n^n/(binomial(n,m)*_Sum{v=0..n-m-1}((-1)^v*binomial(n-m,v)*(n-m-v)^n)))
EXAMPLE
For n=6, there are 6^6 = 46656 sequences on 6 symbols of length 6. Only 6 sequences has a unique symbol, so a(6) = floor(46656/6) = 7776.
KEYWORD
nonn
AUTHOR
Washington Bomfim, Mar 18 2012
STATUS
approved