login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209634
Triangle with (1,4,7,10,13,16...,(3*n-2),...) in every column, shifted down twice.
2
1, 4, 7, 1, 10, 4, 13, 7, 1, 16, 10, 4, 19, 13, 7, 1, 22, 16, 10, 4, 25, 19, 13, 7, 1, 28, 22, 16, 10, 4, 31, 25, 19, 13, 7, 1, 34, 28, 22, 16, 10, 4, 37, 31, 25, 19, 13, 7, 1, 40, 34, 28, 22, 16, 10, 4, 43, 37, 31, 25, 19, 13, 7, 1, 46, 40, 34, 28, 22, 16, 10
OFFSET
1,2
COMMENTS
OEIS contains a lot of similar sequences, for example A152204, A122196, A173284.
Row sums for this sequence gives A006578.
In general, by given triangle with (A-B,2*A-B,...,A*n-B,...) in every column, shifted down K-times, we have the row sum s(n)= A*(n*n+K*n+nmodK)/(2*K) - B*(n+nmodK)/K. In this sequence K=2,A=3,B=2, in A152204 K=2,A=2,B=1.
No triangle with primes in every column, shifted down by K>=2 in OEIS, no row sums of it in OEIS.
From Johannes W. Meijer, Sep 28 2013: (Start)
Triangle read by rows formed from antidiagonals of triangle A143971.
The alternating row sums equal A004524(n+2) + 2*A004524(n+1).
The antidiagonal sums equal A171452(n+1). (End)
FORMULA
From Johannes W. Meijer, Sep 28 2013: (Start)
T(n, k) = 3*n - 6*k + 4, n >= 1 and 1 <= k <= floor((n+1)/2).
T(n, k) = A143971(n-k+1, k), n >= 1 and 1 <= k <= floor((n+1)/2). (End)
EXAMPLE
Triangle:
1
4
7, 1
10, 4
13, 7, 1
16, 10, 4
19, 13, 7, 1
22, 16, 10, 4
25, 19, 13, 7, 1
28, 22, 16, 10, 4
...
MAPLE
T := (n, k) -> 3*n - 6*k + 4: seq(seq(T(n, k), k=1..floor((n+1)/2)), n=1..15); # Johannes W. Meijer, Sep 28 2013
CROSSREFS
KEYWORD
nonn,easy,tabf
AUTHOR
Ctibor O. Zizka, Mar 11 2012
STATUS
approved