login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209613
Expansion of q * phi(-q^2)^2 * psi(q^3) * psi(-q^3)^2 / psi(q) in powers of q where phi(), psi() are Ramanujan theta functions.
2
1, -1, -3, 1, 4, 3, -6, -1, 9, -4, -12, -3, 14, 6, -12, 1, 16, -9, -18, 4, 18, 12, -24, 3, 21, -14, -27, -6, 28, 12, -30, -1, 36, -16, -24, 9, 38, 18, -42, -4, 40, -18, -42, -12, 36, 24, -48, -3, 43, -21, -48, 14, 52, 27, -48, 6, 54, -28, -60, -12, 62, 30
OFFSET
1,3
COMMENTS
Number 27 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Yves Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of eta(q) * eta(q^3) * (eta(q^2) * eta(q^12) / eta(q^4))^2 in powers of q.
Euler transform of period 12 sequence [-1, -3, -2, -1, -1, -4, -1, -1, -2, -3, -1, -4, ...].
a(n) is multiplicative with a(2^e) = (-1)^e, a(3^e) = (-3)^e, a(p^e) = (-1)^(e * (p mod 12 > 6)) * (p^(e+1) - f^(e+1)) / (p - f) if p > 3 where f = Kronecker(3, p).
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 192^(1/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g(t) is g.f. for A113421.
G.f.: Sum_{k>0} k * x^k / (1 + x^k + x^(2*k)) * Kronecker(-4, k).
G.f.: Sum_{k>0} k * x^k / (1 - x^k + x^(2*k)) * A209615(k).
a(2*n) = -a(n) unless n=0. a(3*n) = a(n).
Sum_{k=1..n} abs(a(k)) ~ c * n^2, where c = Pi^2/(18*sqrt(3)) = 0.316567... . - Amiram Eldar, Jan 23 2024
EXAMPLE
G.f. = q - q^2 - 3*q^3 + q^4 + 4*q^5 + 3*q^6 - 6*q^7 - q^8 + 9*q^9 - 4*q^10 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q QPochhammer[ q] QPochhammer[ q^2]^2 QPochhammer[ q^3] QPochhammer[ q^12]^2 / QPochhammer[ q^4]^2 , {q, 0, n}]; (* Michael Somos, Jun 09 2015 *)
a[ n_] := If[ n < 1, 0, DivisorSum[ n, # KroneckerSymbol[ -4, #] KroneckerSymbol[ -3, n/#] &]]; (* Michael Somos, Jun 09 2015 *)
PROG
(PARI) {a(n) = if( n<1, 0, sumdiv( n, d, d * kronecker( -4, d) * kronecker( -3, n/d)))};
(PARI) {a(n) = my(A, p, e, f); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, (-1)^e, p==3, (-3)^e, f = kronecker( 3, p) ; (-1)^(e * (p%12>6)) * (p^(e+1) - f^(e+1)) / (p - f))))};
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^3 + A) * (eta(x^2 + A) * eta(x^12 + A) / eta(x^4 + A))^2, n))};
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Michael Somos, Mar 10 2012
STATUS
approved