Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jan 03 2018 15:05:45
%S 1,-3,6,-15,36,0,210,-1014,1224,-2955,0,0,41580,-200766,484692,0,
%T 1412496,0,8232630,-39750654,0,-231683790,0,0,1630019160,-3935214363,
%U 19000895772,-22936110135,110745336312,0,0,-1558305137094,1881040698144,0,0,0,63900011068740
%N a(n) = Pell(n)*A132973(n) for n>=1, with a(0)=1, where A132973 lists the coefficients in psi(-q)^3/psi(-q^3) and where psi() is a Ramanujan theta function.
%C Compare g.f. to the Lambert series of A132973: 1 - 3*Sum_{n>=0} x^(6*n+1)/(1+x^(6*n+1)) - x^(6*n+5)/(1+x^(6*n+5)).
%H G. C. Greubel, <a href="/A209450/b209450.txt">Table of n, a(n) for n = 0..1000</a>
%F G.f.: 1 - 3*Sum_{n>=0} Pell(6*n+1)*x^(6*n+1)/(1+A002203(6*n+1)*x^(6*n+1)-x^(12*n+2)) - Pell(6*n+5)*x^(6*n+5)/(1+A002203(6*n+5)*x^(6*n+5)-x^(12*n+10)), where A002203(n) = Pell(n-1) + Pell(n+1).
%e G.f.: A(x) = 1 - 3*x + 6*x^2 - 15*x^3 + 36*x^4 + 210*x^6 - 1014*x^7 +...
%e where A(x) = 1 - 1*3*x + 2*3*x^2 - 5*3*x^3 + 12*3*x^4 + 70*3*x^6 - 169*6*x^7 + 408*3*x^8 +...+ Pell(n)*A132973(n)*x^n +...
%e The g.f. is also given by the identity:
%e A(x) = 1 - 3*( 1*x/(1+2*x-x^2) - 29*x^5/(1+82*x^5-x^10) + 169*x^7/(1+478*x^7-x^14) - 5741*x^11/(1+16238*x^11-x^22) + 33461*x^13/(1+94642*x^13-x^26) - 1136689*x^17/(1+3215042*x^17-x^34) +...).
%t A132973[n_]:= SeriesCoefficient[EllipticTheta[2, Pi/4, q^(1/2)]^3/EllipticTheta[2, Pi/4, q^(3/2)]/2, {q, 0, n}]; Join[{1}, Table[ Fibonacci[n, 2]*A132973[n],{n,1,50}]] (* _G. C. Greubel_, Jan 02 2018 *)
%o (PARI) {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
%o {A002203(n)=Pell(n-1)+Pell(n+1)}
%o {a(n)=polcoeff(1 - 3*sum(m=0,n, Pell(6*m+1)*x^(6*m+1)/(1+A002203(6*m+1)*x^(6*m+1)-x^(12*m+2) +x*O(x^n)) - Pell(6*m+5)*x^(6*m+5)/(1+A002203(6*m+5)*x^(6*m+5)-x^(12*m+10) +x*O(x^n)) ),n)}
%o for(n=0,61,print1(a(n),", "))
%Y Cf. A132973, A205970, A209449, A209451, A204270, A000129 (Pell), A002203.
%K sign
%O 0,2
%A _Paul D. Hanna_, Mar 10 2012