login
A209327
Total number of nodes in the largest connected component of a functional digraph summed over all endofunctions f:{1,2,...,n}-> {1,2,...,n}.
3
1, 7, 70, 863, 13056, 231187, 4737986, 109531991, 2835638008, 80950287311, 2533758258912, 86089196479255, 3161596017956936, 124590870125959343, 5251666647713483356, 235497961945975068767, 11205025852314462333408, 563351626162952600815087, 29864689571162209608920060, 1663796497123214306448307031
OFFSET
1,2
COMMENTS
a(n)/n^n is the average size of the largest component.
a(n)/n^(n + 1) is the probability that a particular node is in the largest component of the digraph.
REFERENCES
R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison and Welsey, 1996, Chapter 8.
LINKS
FORMULA
a(n) = Sum_{k=1..n} k * A209324(n,k).
MAPLE
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, m) option remember; `if`(n=0, x^m, add(g(i)*
b(n-i, max(m, i))*binomial(n-1, i-1), i=1..n))
end:
a:= n-> (p-> add(coeff(p, x, i)*i, i=1..n))(b(n, 0)):
seq(a(n), n=1..20); # Alois P. Heinz, Dec 17 2021
MATHEMATICA
nn=20; g[list_]:= Sum[list[[i]]*i, {i, 1, Length[list]}]; t=Sum[n^(n-1)x^n/n!, {n, 1, nn}]; c=Log[1/(1-t)]; b=Drop[Range[0, nn]!CoefficientList[Series[c, {x, 0, nn}], x], 1]; f[list_]:=Select[list, #>0&]; Map[g, Map[ f, Drop[Transpose[Table[Range[0, nn]!CoefficientList[Series[ Exp[Sum[b[[i]]x^i/i!, {i, 1, n+1}]]-Exp[Sum[b[[i]]x^i/i!, {i, 1, n}]], {x, 0, nn}], x], {n, 0, nn-1}]], 1]]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Jan 19 2013
STATUS
approved