OFFSET
1,2
COMMENTS
Numbers having only squarefree exponents in their canonical prime factorization;
A166234(a(n)) <> 0;
According to the formula of Theorem 3 [Toth], the density of the exponentially squarefree numbers is 0.9559230158619... - Peter J. C. Moses and Vladimir Shevelev, Sep 10 2015
From Vladimir Shevelev, Sep 24 2015: (Start)
A generalization. Let S be a finite or infinite increasing integer sequence s=s(n), s(0)=0.
Let us call a positive number N an exponentially S-number, if all exponents in its prime power factorization are in the sequence S.
Let {u(n)} be the characteristic function of S. Then, for the density h=h(S) of the exponentially S-numbers, we have the representations
h(S) = Product_{prime p} Sum_{j in S}(p-1)/p^(j+1) = Product_{p} (1 + Sum_{j>=1} (u(j) - u(j-1))/p^j}. In particular, if S = {0,1}, then the exponentially S-numbers are squarefree numbers; if S consists of 0 and {2^k}_(k>=0}, then the exponentially S-numbers form A138302 (see [Shevelev], 2007); if S consists of 0 and squarefree numbers, then u(n)=|mu(n)|, where mu(n) is the Möbius function (A008683), we obtain the density h of the exponentially squarefree numbers (cf. Toth's link, Theorem 3); the calculation of h with a very high degree of accuracy belongs to Juan Arias-de-Reyna (A262276). Note that if S contains 1, then h(S) >= 1/zeta(2) = 6/Pi^2; otherwise h(S) = 0. Indeed, in the latter case, the density of the sequence of exponentially S-numbers does not exceed the density of A001694, which equals 0. (End)
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
X. Cao, W. Zhai, Some arithmetic functions involving exponential divisors, JIS 13 (2010) 10.3.7
Y.-F. S. Petermann, Arithmetical functions involving exponential divisors: note on two papers by L. Toth, Ann. Univ. Sci. Budapest, Sect. Comp. 32 (2010) 143-149
Vladimir Shevelev, Compact integers and factorials, Acta Arithmetica 126:3 (2007), pp. 195-236.
Vladimir Shevelev, Exponentially S-numbers, arXiv:1510.05914 [math.NT], 2015.
Vladimir Shevelev, Set of all densities of exponentially S-numbers, arXiv:1511.03860 [math.NT], 2015.
Vladimir Shevelev, A fast computation of density of exponentially S-numbers, arXiv:1602.04244 [math.NT], 2016.
Vladimir Shevelev, S-exponential numbers, Acta Arithmetica, Vol. 175(2016), 385-395.
H. M. Stark, On the asymptotic density of the k-free integers, Proc. Amer. Soc. 17 (1966), 1211-1214.
Laszlo Toth, On certain arithmetic functions involving exponential divisors, II., Annales Univ. Sci. Budapest., Sect. Comp., 27 (2007), 155-166 and arXiv:0708.3557 [math.NT], 2007-2009.
FORMULA
One can prove that the principal term of Toth's asymptotics for the density of this sequence (cf. Toth's link, Theorem 3) equals also Product_{prime p}(Sum_{j in S}(p-1)/p^{j+1})*x, where S is the set of 0 and squarefree numbers. The remainder term O(x^(0.2+t)), where t>0 is arbitrarily small, was obtained by L. Toth while assuming the Riemann Hypothesis. - Vladimir Shevelev, Sep 12 2015
MATHEMATICA
Select[Range@ 69, Times @@ Boole@ Map[SquareFreeQ, Last /@ FactorInteger@ #] > 0 &] (* Michael De Vlieger, Sep 07 2015 *)
PROG
(Haskell)
a209061 n = a209061_list !! (n-1)
a209061_list = filter
(all (== 1) . map (a008966 . fromIntegral) . a124010_row) [1..]
(PARI) is(n)=my(f=factor(n)[, 2]); for(i=1, #f, if(!issquarefree(f[i]), return(0))); 1 \\ Charles R Greathouse IV, Sep 02 2015
CROSSREFS
Complement of A130897.
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Mar 13 2012
STATUS
approved