login
A208622
Number of Young tableaux with 9 n-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing).
1
1, 1, 24310, 499208817, 180929760551225, 220232478504498403075, 583831478578178958083979415, 2760236523281606433215665762615849, 20535579472799243918667089350306950940643, 220381419513554767061883905294847700173775763891
OFFSET
0,3
COMMENTS
Also the number of (9*n-1)-step walks on n-dimensional cubic lattice from (1,0,...,0) to (9,9,...,9) with positive unit steps in all dimensions such that for each point (p_1,p_2,...,p_n) we have p_1<=p_2<=...<=p_n or p_1>=p_2>=...>=p_n.
CROSSREFS
Row n=9 of A208615.
Sequence in context: A318630 A194721 A140923 * A294856 A025041 A156843
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Feb 29 2012
STATUS
approved