login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208616
Number of Young tableaux with 3 n-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing).
2
1, 1, 10, 53, 491, 6091, 87781, 1386529, 23374495, 414325055, 7646034683, 145862292213, 2861143072425, 57468095412921, 1178095930854841, 24584089994286121, 521086299342539671, 11198784502153759831, 243661974373753909051, 5360563436205104422681
OFFSET
0,3
COMMENTS
Also the number of (3*n-1)-step walks on n-dimensional cubic lattice from (1,0,...,0) to (3,3,...,3) with positive unit steps in all dimensions such that for each point (p_1,p_2,...,p_n) we have p_1<=p_2<=...<=p_n or p_1>=p_2>=...>=p_n.
LINKS
FORMULA
a(n) ~ 3^(3*n+1/2) / (Pi*n^4). - Vaclav Kotesovec, Jul 16 2014
MAPLE
a:= proc(n) option remember; `if`(n<5, [1, 1, 10, 53, 491][n+1],
((116013096898*n^6 -1106227006064*n^5 +3651730072724*n^4
-5019246600372*n^3 +2923780805838*n^2 -701199942904*n) *a(n-1)
+(-429126244301*n^6 +4283495440027*n^5 -14793057372915*n^4
+19089754215809*n^3 -168467698444*n^2 -17547244920336*n
+9564646580160) *a(n-2) +(24700698282*n^6 +2323122442728*n^5
-31157649402714*n^4 +153639646198428*n^3 -363480023453028*n^2
+415894667210784*n -184360926114960) *a(n-3) +(292122384552*n^6
-5522876986500*n^5 +42303228071580*n^4 -167574646102140*n^3
+360649174254588*n^2 -397826818736400*n +174796279534800) *a(n-4))/
(n*(3709935431*n^5 -22486109809*n^4 +4251368675*n^3 +135507711725*n^2
-75536091046*n -180596388856)))
end:
seq(a(n), n=0..30);
MATHEMATICA
b[nn__] := b[nn] = If[(lg = Length[{nn}]) < 2, 1, If[First[{nn}] == Last[{nn}], If[First[{nn}] == 0, 1, 2*b[First[{nn}]-1, Sequence @@ Rest[{nn}]]], If[First[{nn}] > 0, b[First[{nn}] - 1, Sequence @@ Rest[{nn}]], 0] + Sum[If[{nn}[[j]] > {nn}[[j-1]], b[Sequence @@ Table[ {nn}[[i]] - If[i == j, 1, 0], {i, 1, lg}]], 0], {j, 2, lg}]]];
a[n_] := If[n == 0, 1, b[2, Sequence @@ Table[3, {n-1}]]];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 29 2017, after Alois P. Heinz (cf. A208615) *)
CROSSREFS
Row n=3 of A208615.
Sequence in context: A301349 A007035 A093187 * A219169 A292058 A152762
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Feb 29 2012
STATUS
approved