login
Number of 6Xn 0..2 arrays with new values 0..2 introduced in row major order and no element equal to more than two of its immediate leftward or upward or right-upward antidiagonal neighbors
1

%I #5 Mar 31 2012 12:37:23

%S 122,88574,53466192,33085555344,20413586117376,12599441934740388,

%T 7776176148498498768,4799354153334997638528,2962097148583259021121408,

%U 1828166808374593843302307296,1128320137401532221612440868480

%N Number of 6Xn 0..2 arrays with new values 0..2 introduced in row major order and no element equal to more than two of its immediate leftward or upward or right-upward antidiagonal neighbors

%C Row 6 of A208392

%H R. H. Hardin, <a href="/A208397/b208397.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 483*a(n-1) +79374*a(n-2) +2325758*a(n-3) -116482840*a(n-4) -4495564268*a(n-5) +111405792720*a(n-6) +2919342926960*a(n-7) -84278449377440*a(n-8) -292603254712096*a(n-9) +29279534769068608*a(n-10) -369555641966430528*a(n-11) +1674749264072678656*a(n-12) +2156486801391239424*a(n-13) -44057404748132724736*a(n-14) +72097583624114731008*a(n-15) +455663058958407811072*a(n-16) -1247507020751283224576*a(n-17) -3007043688407624581120*a(n-18) +9354958262137561546752*a(n-19) +16366237761751490756608*a(n-20) -38560165649886912446464*a(n-21) -74672497584369523752960*a(n-22) +72558930328852457586688*a(n-23) +224968833273366480683008*a(n-24) +41691604839132475424768*a(n-25) -285907224003663252946944*a(n-26) -313784969927732142014464*a(n-27) -101581793844321214005248*a(n-28) +27613799564794291814400*a(n-29) +24843347713795943301120*a(n-30) +2744862767351536287744*a(n-31) -1217400666371817209856*a(n-32) -239668061369775685632*a(n-33) for n>37

%e Some solutions for n=4

%e ..0..0..1..0....0..0..0..1....0..1..2..1....0..0..0..0....0..0..1..2

%e ..1..1..0..0....1..2..2..1....2..0..0..1....0..1..1..2....2..2..1..0

%e ..2..0..1..0....2..0..1..1....0..2..0..1....0..1..2..1....0..1..2..1

%e ..0..1..1..0....2..1..2..0....2..0..1..0....2..2..0..0....0..1..0..0

%e ..0..1..0..2....1..2..0..1....0..2..1..1....0..2..2..0....2..2..0..0

%e ..2..2..0..1....1..2..0..2....2..0..0..1....0..1..0..1....0..1..0..2

%K nonn

%O 1,1

%A _R. H. Hardin_ Feb 25 2012