%I #5 Mar 31 2012 12:37:23
%S 122,88574,53466192,33085555344,20413586117376,12599441934740388,
%T 7776176148498498768,4799354153334997638528,2962097148583259021121408,
%U 1828166808374593843302307296,1128320137401532221612440868480
%N Number of 6Xn 0..2 arrays with new values 0..2 introduced in row major order and no element equal to more than two of its immediate leftward or upward or right-upward antidiagonal neighbors
%C Row 6 of A208392
%H R. H. Hardin, <a href="/A208397/b208397.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 483*a(n-1) +79374*a(n-2) +2325758*a(n-3) -116482840*a(n-4) -4495564268*a(n-5) +111405792720*a(n-6) +2919342926960*a(n-7) -84278449377440*a(n-8) -292603254712096*a(n-9) +29279534769068608*a(n-10) -369555641966430528*a(n-11) +1674749264072678656*a(n-12) +2156486801391239424*a(n-13) -44057404748132724736*a(n-14) +72097583624114731008*a(n-15) +455663058958407811072*a(n-16) -1247507020751283224576*a(n-17) -3007043688407624581120*a(n-18) +9354958262137561546752*a(n-19) +16366237761751490756608*a(n-20) -38560165649886912446464*a(n-21) -74672497584369523752960*a(n-22) +72558930328852457586688*a(n-23) +224968833273366480683008*a(n-24) +41691604839132475424768*a(n-25) -285907224003663252946944*a(n-26) -313784969927732142014464*a(n-27) -101581793844321214005248*a(n-28) +27613799564794291814400*a(n-29) +24843347713795943301120*a(n-30) +2744862767351536287744*a(n-31) -1217400666371817209856*a(n-32) -239668061369775685632*a(n-33) for n>37
%e Some solutions for n=4
%e ..0..0..1..0....0..0..0..1....0..1..2..1....0..0..0..0....0..0..1..2
%e ..1..1..0..0....1..2..2..1....2..0..0..1....0..1..1..2....2..2..1..0
%e ..2..0..1..0....2..0..1..1....0..2..0..1....0..1..2..1....0..1..2..1
%e ..0..1..1..0....2..1..2..0....2..0..1..0....2..2..0..0....0..1..0..0
%e ..0..1..0..2....1..2..0..1....0..2..1..1....0..2..2..0....2..2..0..0
%e ..2..2..0..1....1..2..0..2....2..0..0..1....0..1..0..1....0..1..0..2
%K nonn
%O 1,1
%A _R. H. Hardin_ Feb 25 2012