login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A207214
E.g.f.: Sum_{n>=0} exp(n*x) * Product_{k=1..n} (exp(k*x) - 1).
2
1, 1, 7, 85, 1759, 55621, 2501407, 151984645, 12004046719, 1196068161541, 146792747463007, 21762540250822405, 3834791755438306879, 792270319634586707461, 189687840256042278859807, 52103089179906338874671365, 16275196750916467736633834239
OFFSET
0,3
COMMENTS
Compare the e.g.f. to the identity:
exp(-x) = Sum_{n>=0} exp(n*x) * Product_{k=1..n} (1 - exp(k*x)).
LINKS
Hsien-Kuei Hwang, Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019.
FORMULA
E.g.f. A(x) satisfies: A(x) = exp(-x)*(2*G(x) - 1),
where G(x) = Sum_{n>=0} Product_{k=1..n} (exp(k*x) - 1) = e.g.f. of A158690.
a(n) ~ sqrt(2) * 12^(n+1) * (n!)^2 / Pi^(2*n+2). - Vaclav Kotesovec, May 05 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 7*x^2/2! + 85*x^3/3! + 1759*x^4/4! + 55621*x^5/5! +...
such that, by definition,
A(x) = 1 + exp(x) * (exp(x)-1) + exp(2*x) * (exp(x)-1)*(exp(2*x)-1)
+ exp(3*x) * (exp(x)-1)*(exp(2*x)-1)*(exp(3*x)-1)
+ exp(4*x) * (exp(x)-1)*(exp(2*x)-1)*(exp(3*x)-1)*(exp(4*x)-1) +...
The related e.g.f. of A158690 equals the series:
G(x) = 1 + (exp(x)-1) + (exp(x)-1)*(exp(2*x)-1)
+ (exp(x)-1)*(exp(2*x)-1)*(exp(3*x)-1)
+ (exp(x)-1)*(exp(2*x)-1)*(exp(3*x)-1)*(exp(4*x)-1) +...
or, more explicitly,
G(x) = 1 + x + 5*x^2/2! + 55*x^3/3! + 1073*x^4/4! + 32671*x^5/5! +...
such that G(x) satisfies:
G(x) = (1 + exp(x)*A(x))/2.
PROG
(PARI) {a(n)=n!*polcoeff(sum(m=0, n+1, exp(m*x+x*O(x^n))*prod(k=1, m, exp(k*x+x*O(x^n))-1)), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A158690.
Sequence in context: A060237 A000424 A368787 * A000686 A102923 A220246
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 16 2012
STATUS
approved