login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A207041
Carmichael numbers that can be written as a product of two Carmichael numbers.
3
509033161, 1836304561, 5394826801, 20064165121, 25594002721, 47782272385, 59970791881, 75527369281, 84127131361, 96578912521, 116087568961, 278585544601, 387394248241, 416937760921, 584698468861, 1623222276481, 1690000282321, 1788750684721, 1945024664401
OFFSET
1,1
COMMENTS
Subsequence of A002997; a(1) = A002997(472) and a(9) = A002997(3380).
LINKS
Donovan Johnson and Charles R Greathouse IV, Table of n, a(n) for n = 1..5308 (terms < 2^64; indices 1..2008, representing terms < 10^18, are from Johnson)
EXAMPLE
a(1) = 509033161 = 1729 * 294409 = A002997(3) * A002997(25).
a(9) = 84127131361 = 15841 * 5310721 = A002997(9) * A002997(78) = 172081 * 488881 = A002997(21) * A002997(32) (two representations).
MATHEMATICA
(*M is the set of the first G (G<=10000) Carmichael numbers, as found in https://oeis.org/A002997/b002997.txt*) i=0; SPCM={}; While[i<G-1, i++; m=M[[i]]; j=i; While[j<G, j++; n=M[[j]]; If[GCD[m, n]==1, c=m n; If[c<=M[[1]] M[[G]], Fc=FactorInteger[c]; k=Length[Fc]; j2=0; While[j2<k, j2++; p=First[Fc[[j2]]]; If[Mod[c-1, p-1]!=0, j2=k+1]]; If[j2!=k+1, SPCM=Append[SPCM, c]]]]]]; SPCM=Union[SPCM]
CROSSREFS
Cf. A002997.
Sequence in context: A210155 A348798 A203261 * A339551 A319937 A186092
KEYWORD
nonn
AUTHOR
Emmanuel Vantieghem, Feb 14 2012
STATUS
approved