login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206565
Expansion of 1/(1 - 37*x + x^2).
1
1, 37, 1368, 50579, 1870055, 69141456, 2556363817, 94516319773, 3494547467784, 129203739988235, 4777043832096911, 176621418047597472, 6530215423929009553, 241441349267325755989, 8926799707467123962040
OFFSET
0,2
COMMENTS
Chebyshev polynomials S(n, 37).
A Diophantine property of these numbers: (a(n+1)-a(n-1))^2 - 1365*a(n)^2 = 4. - Bruno Berselli, Feb 09 2012
a(n) equals the number of 01-avoiding words of length n on alphabet {0,1,...,36}. - Milan Janjic, Jan 26 2015
FORMULA
G.f.: 1/(1 - 37*x + x^2).
a(n) = Sum_{k=0..n} A049310(n,k)*37^k.
a(n) = 37*a(n-1) - a(n-2), n>=1; a(0)=1, a(1) = 37, a(-1) = 0.
a(n) = -a(-n-2) = (t^(n+1)-1/t^(n+1))/(t-1/t) where t=(37+sqrt(1365))/2. - Bruno Berselli, Feb 09 2012
a(n) = Sum_{k=0..n} A101950(n,k)*36^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = 1/35*(35 + sqrt(1365)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = 1/74*(35 + sqrt(1365)). - Peter Bala, Dec 23 2012
MATHEMATICA
CoefficientList[Series[1/(1-37x+x^2), {x, 0, 20}], x] (* or *) LinearRecurrence[ {37, -1}, {1, 37}, 20] (* Harvey P. Dale, Dec 13 2017 *)
PROG
(PARI) Vec(1/(1-37*x+x^2)+O(x^15))
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-1365); S:=[(((37+r)/2)^n-1/((37+r)/2)^n)/r: n in [1..15]]; [Integers()!S[j]: j in [1..#S]];
(Maxima) makelist(sum((-1)^k*binomial(n-k, k)*37^(n-2*k), k, 0, floor(n/2)), n, 0, 14);
CROSSREFS
Sequence in context: A218739 A217961 A263372 * A223225 A262763 A188692
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Feb 09 2012
STATUS
approved