OFFSET
0,2
COMMENTS
I have proved that for any odd prime p we have a(p) == p (mod p^2). - Zhi-Wei Sun, Aug 30, 2021
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..36
Zhi-Wei Sun, Arithmetic properties of some permanents, arXiv:2108.07723 [math.GM], 2021.
FORMULA
From Vaclav Kotesovec, Dec 01 2016: (Start)
a(n) ~ c * d^n * (n!)^2 / sqrt(n), where d = A278300 = 2.455407482284127949... and c = 1.41510164826...
a(n) ~ c * d^n * n^(2*n + 1/2), where d = A278300/exp(2) = 0.332303267076220516... and c = 8.89134588451...
(End)
MAPLE
with(LinearAlgebra):
a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> i+j))):
seq(a(n), n=0..16); # Alois P. Heinz, Nov 14 2016
MATHEMATICA
f[i_, j_] := i + j;
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[8]] (* 8x8 principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 12}, {i, 1, n}]] (* A003057 *)
Permanent[m_] :=
With[{a = Array[x, Length[m]]},
Coefficient[Times @@ (m.a), Times @@ a]];
Table[Permanent[m[n]], {n, 1, 15}] (* A204249 *)
PROG
(PARI) {a(n) = matpermanent(matrix(n, n, i, j, i+j))}
for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Dec 21 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 14 2012
EXTENSIONS
a(0)=1 prepended and one more term added by Alois P. Heinz, Nov 14 2016
STATUS
approved