login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204220
Expansion of f(-x^2, -x^3) * f(-x^2, -x^4) / f(-x, -x^2) in powers of x where f(, ) is Ramanujan's general theta function.
3
1, 1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,1
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of G(x) * f(-x^2) where G() is the g.f. of A003114.
Expansion of f(-x^13, -x^17) + x * f(-x^7, -x^23) in powers of x.
Euler transform of period 10 sequence [ 1, -1, 0, 0, 0, 0, 0, -1, 1, -1, ...].
G.f.: Sum_{k} (-1)^k * x^(15*k^2) * (x^(2*k) + x^(8*k + 1)) = Product_{k>0} (1 - x^(10*k)) * (1 - x^(10*k -2)) * (1 - x^(10*k -8)) / ((1 - x^(10*k -1)) * (1 - x^(10*k -9))).
|a(n)| is the characteristic function of A204221.
The exponents in the q-series q * A(q^15) are the squares of the numbers == +- 1 or +- 4 (mod 15).
EXAMPLE
G.f. = 1 + x - x^8 - x^13 - x^17 - x^24 + x^45 + x^56 + x^64 + x^77 - x^112 + ...
G.f. = q + q^16 - q^121 - q^196 - q^256 - q^361 + q^676 + q^841 + q^961 + q^1156 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2, x^5] QPochhammer[ x^3, x^5] QPochhammer[ x^5] QPochhammer[ -x, x], {x, 0, n}]; (* Michael Somos, Jan 06 2016 *)
a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{ -1, 1, 0, 0, 0, 0, 0, 1, -1, 1}[[Mod[k, 10, 1]]], {k, n}], {x, 0, n}]; (* Michael Somos, Jan 06 2016 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, (1 - x^k) ^ ([1, -1, 1, 0, 0, 0, 0, 0, 1, -1][k%10 + 1]), 1 + x * O(x^n)), n))};
CROSSREFS
Sequence in context: A359549 A359773 A359774 * A281814 A353566 A279484
KEYWORD
sign
AUTHOR
Michael Somos, Jan 13 2012
STATUS
approved