login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204146
Number of (n+2) X 3 0..2 arrays with every 3 X 3 subblock having equal diagonal elements or equal antidiagonal elements, and new values 0..2 introduced in row major order.
1
689, 3902, 22262, 127022, 724154, 4128422, 23538722, 134209022, 765199994, 4362829142, 24874945682, 141826072622, 808630145834, 4610454909062, 26286795128642, 149875795721822, 854526159123674, 4872133976736182
OFFSET
1,1
COMMENTS
Column 1 of A204153.
LINKS
FORMULA
Empirical: a(n) = 6*a(n-1) -5*a(n-2) +20*a(n-3) -4*a(n-4) -16*a(n-5).
Empirical g.f.: x*(689 - 232*x + 2295*x^2 - 820*x^3 - 1952*x^4) / ((1 - x)*(1 + 4*x^2)*(1 - 5*x - 4*x^2)). - Colin Barker, Jun 06 2018
EXAMPLE
Some solutions for n=4:
..0..0..0....0..1..1....0..1..0....0..0..0....0..0..1....0..0..1....0..1..0
..1..0..1....2..0..2....0..0..1....1..0..1....0..1..0....2..0..1....1..0..0
..1..1..0....1..2..0....2..0..0....1..1..0....1..0..2....1..1..0....2..1..0
..0..0..1....0..0..2....2..2..0....2..0..1....1..1..0....1..0..2....0..2..1
..0..1..1....0..0..2....1..2..2....0..2..0....2..0..1....0..1..0....2..0..2
..1..2..2....2..1..0....0..1..2....2..2..2....0..2..0....2..2..1....1..2..0
CROSSREFS
Cf. A204153.
Sequence in context: A025355 A025347 A204153 * A259512 A078877 A204145
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 11 2012
STATUS
approved