login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203140
Decimal expansion of Gamma(1/12).
13
1, 1, 4, 9, 9, 4, 2, 8, 1, 8, 6, 0, 7, 3, 9, 9, 0, 6, 6, 3, 8, 8, 5, 6, 0, 9, 8, 5, 2, 4, 3, 9, 2, 0, 0, 9, 7, 9, 8, 7, 6, 6, 1, 5, 2, 0, 1, 3, 6, 5, 2, 9, 7, 2, 1, 9, 5, 3, 8, 5, 1, 7, 8, 3, 9, 3, 6, 4, 7, 2, 5, 3, 9, 9, 5, 6, 7, 6, 1, 1, 8, 3, 5, 3, 4, 3, 5, 9, 1, 9, 8, 5, 7, 2, 2, 9, 8, 3, 8
OFFSET
2,3
FORMULA
Equals 3^(3/8) * sqrt(1 + sqrt(3)) * Gamma(1/3) * Gamma(1/4) / (2^(1/4) * sqrt(Pi)). - Vaclav Kotesovec, Apr 15 2024
EXAMPLE
11.499428186073990663885609852439200979876615201365297219538...
MATHEMATICA
RealDigits[Gamma[1/12], 10, 100][[1]] (* G. C. Greubel, Jan 15 2017 *)
RealDigits[3^(3/8) * Sqrt[1 + Sqrt[3]] * Gamma[1/3] * Gamma[1/4] / (2^(1/4) * Sqrt[Pi]), 10, 120][[1]] (* Vaclav Kotesovec, Apr 15 2024 *)
PROG
(PARI) default(realprecision, 100); gamma(1/12) \\ G. C. Greubel, Jan 15 2017
(Magma) SetDefaultRealField(RealField(100)); Gamma(1/12); // G. C. Greubel, Mar 10 2018
CROSSREFS
Sequence in context: A196516 A021671 A359187 * A011512 A200642 A209674
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Dec 29 2011
STATUS
approved