OFFSET
1,2
FORMULA
a(n) equals the coefficient of x^n/n! in the n-th iteration of 1 - (1-x)^(1/(1 + log(1-x))).
EXAMPLE
Let G(x) = 1 - (1-x)^(1/(1 + log(1-x))); the iterations of G(x) begin:
G(x) = x + 2*x^2/2! + 6*x^3/3! + 22*x^4/4! + 80*x^5/5! + 98*x^6/6! +...
G(G(x)) = x + 4*x^2/2! + 24*x^3/3! + 188*x^4/4! + 1780*x^5/5! +...
G(G(G(x))) = x + 6*x^2/2! + 54*x^3/3! + 642*x^4/4! + 9420*x^5/5! +...
G(G(G(G(x)))) = x + 8*x^2/2! + 96*x^3/3! + 1528*x^4/4! + 30200*x^5/5! +...
G(G(G(G(G(x))))) = x + 10*x^2/2! + 150*x^3/3! + 2990*x^4/4! + 74200*x^5/5! +...
PROG
(PARI) {a(n)=n!*polcoeff(1-(1-x+x*O(x^n))^(1/(1+n*log(1-x+x*O(x^n)))), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 27 2011
STATUS
approved