login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202901
Number of n X 3 0..1 arrays with every one equal to some NW, E or S neighbor.
1
1, 14, 93, 494, 2801, 16062, 91161, 517646, 2942681, 16724094, 95039817, 540117614, 3069530009, 17444277726, 99136698537, 563399082830, 3201826086713, 18196142535870, 103409617841865, 587682198231086, 3339828270813785
OFFSET
1,2
FORMULA
Empirical: a(n) = 8*a(n-1) -17*a(n-2) +32*a(n-3) -70*a(n-4) +72*a(n-5) -24*a(n-6).
Formula verified by Robert Israel, May 09 2018 (see link).
G.f.: x*(1 + 6*x - 2*x^2 - 44*x^3 + 52*x^4 - 16*x^5) / ((1 - x)*(1 - 7*x + 10*x^2 - 22*x^3 + 48*x^4 - 24*x^5)). - Colin Barker, Jun 02 2018
EXAMPLE
Some solutions for n=5:
0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 0 0
1 0 1 0 1 1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 0
1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1
0 1 0 0 0 1 0 1 1 0 0 1 0 1 1 1 1 1 0 0 0
MAPLE
f:= gfun:-rectoproc({a(n) = 8*a(n-1) -17*a(n-2) +32*a(n-3) -70*a(n-4) +72*a(n-5) -24*a(n-6), seq(a(i)=[1, 14, 93, 494, 2801, 16062][i], i=1..6)},
a(n), remember):
map(f, [$1..25]); # Robert Israel, May 09 2018
MATHEMATICA
LinearRecurrence[{8, -17, 32, -70, 72, -24}, {1, 14, 93, 494, 2801, 16062}, 21] (* Jean-François Alcover, Aug 26 2022 *)
CROSSREFS
Column 3 of A202906.
Sequence in context: A022609 A060217 A113776 * A224328 A241396 A370721
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Dec 25 2011
STATUS
approved