Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jun 02 2018 10:35:11
%S 1,4,14,40,116,344,1016,2992,8816,25984,76576,225664,665024,1959808,
%T 5775488,17020160,50157824,147813376,435600896,1283700736,3783021568,
%U 11148433408,32854046720,96819736576,285324406784,840841134080
%N Number of n X 2 0..1 arrays with every one equal to some NW, E or S neighbor.
%C Column 2 of A202906.
%H R. H. Hardin, <a href="/A202900/b202900.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 4*a(n-1) -4*a(n-2) +4*a(n-3) -4*a(n-4).
%F Empirical g.f.: x*(1 + 2*x^2 - 4*x^3) / (1 - 4*x + 4*x^2 - 4*x^3 + 4*x^4). - _Colin Barker_, Jun 02 2018
%e Some solutions for n=5:
%e ..1..1....0..0....1..1....1..0....0..1....1..0....1..0....1..1....1..0....1..1
%e ..0..1....0..0....1..1....1..0....0..1....1..1....1..0....0..1....1..1....1..1
%e ..0..0....1..0....0..0....1..1....0..1....1..1....1..0....1..1....0..0....0..1
%e ..1..1....1..1....1..0....0..1....1..1....0..1....1..0....1..1....1..1....1..1
%e ..1..1....0..1....1..1....0..0....1..1....0..0....1..1....0..1....1..1....1..1
%Y Cf. A202906.
%K nonn
%O 1,2
%A _R. H. Hardin_, Dec 25 2011