login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+2)X3 binary arrays avoiding patterns 001 and 010 in rows, columns and nw-to-se diagonals.
1

%I #9 Jul 19 2023 10:19:28

%S 96,258,776,2201,6037,16722,46270,127161,349088,958698,2630889,

%T 7215860,19790631,54276884,148842778,408154085,1119230330,3069096344,

%U 8415836728,23077199603,63280320762,173521625446,475815066492,1304736247929

%N Number of (n+2)X3 binary arrays avoiding patterns 001 and 010 in rows, columns and nw-to-se diagonals.

%H R. H. Hardin, <a href="/A202891/b202891.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 3*a(n-1) -3*a(n-2) +14*a(n-3) -20*a(n-4) +9*a(n-5) -47*a(n-6) +24*a(n-7) +14*a(n-8) +62*a(n-9) +24*a(n-10) -33*a(n-11) -52*a(n-12) -43*a(n-13) +4*a(n-14) +25*a(n-15) +20*a(n-16) +5*a(n-17) -2*a(n-18) -3*a(n-19).

%e Some solutions for n=3

%e ..1..1..1....0..1..1....0..1..1....1..1..1....1..0..1....1..0..1....0..1..1

%e ..1..1..1....1..1..0....1..1..1....1..1..1....1..0..0....0..1..1....1..1..1

%e ..1..1..1....1..0..1....1..1..1....0..1..1....0..0..0....0..1..1....1..1..1

%e ..1..1..0....1..1..1....1..1..1....1..0..0....1..0..0....0..1..1....0..0..0

%e ..1..0..0....1..1..1....1..0..0....1..1..0....1..0..0....0..1..1....0..0..0

%Y Column 1 of A202898.

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 25 2011