login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201975
Number of n X 2 0..3 arrays with rows and columns lexicographically nondecreasing read forwards and nonincreasing read backwards.
1
4, 30, 72, 131, 208, 304, 420, 557, 716, 898, 1104, 1335, 1592, 1876, 2188, 2529, 2900, 3302, 3736, 4203, 4704, 5240, 5812, 6421, 7068, 7754, 8480, 9247, 10056, 10908, 11804, 12745, 13732, 14766, 15848, 16979, 18160, 19392, 20676, 22013, 23404, 24850
OFFSET
1,1
COMMENTS
Column 2 of A201981.
LINKS
FORMULA
Empirical: a(n) = (1/6)*n^3 + 7*n^2 + (23/6)*n - 7.
Conjectures from Colin Barker, May 25 2018: (Start)
G.f.: x*(4 + 14*x - 24*x^2 + 7*x^3) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
(End)
EXAMPLE
Some solutions for n=9.
..0..3....1..3....0..3....0..3....1..3....0..3....0..3....1..2....0..3....0..1
..0..3....1..3....0..3....0..3....2..2....0..3....1..2....3..1....0..3....3..0
..1..2....1..3....0..3....0..3....2..2....0..3....1..2....3..1....1..2....3..0
..1..2....1..3....0..3....0..3....2..2....0..3....1..2....3..1....2..1....3..0
..1..2....1..3....2..0....0..3....2..2....2..1....1..2....3..1....2..1....3..0
..2..0....1..3....2..0....1..2....2..2....2..1....1..2....3..1....2..1....3..0
..2..0....2..2....2..0....1..2....2..2....2..1....1..2....3..1....3..0....3..0
..2..0....3..1....2..0....1..2....3..0....2..1....3..1....3..1....3..0....3..0
..2..0....3..1....2..0....2..1....3..0....2..1....3..1....3..1....3..0....3..0
CROSSREFS
Cf. A201981.
Sequence in context: A248528 A336493 A296247 * A109670 A014697 A328103
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 07 2011
STATUS
approved