OFFSET
1,1
COMMENTS
One of primes p, q must be 3, hence we have two sets of primes: 9+2*p^2 and p^2+18 with p > 3.
Note that if we allow 2 for p or q then there is another "set" of primes of the form p^2+8 (q=2) with odd prime p -- this set contains only the prime 17=3^2+8.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
43=5^2+2*3^2, 59=3^2+2*5^2, 67=7^2+2*3^2.
PROG
(PARI) list(lim)=my(v=List(), t); forprime(p=5, sqrtint(lim\1-18), if(isprime(t=p^2+18), listput(v, t))); forprime(q=5, sqrtint((lim-9)\2), if(isprime(t=2*q^2+9), listput(v, t))); Set(v) \\ Charles R Greathouse IV, Aug 26 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Dec 03 2011
EXTENSIONS
Corrected by Charles R Greathouse IV, Aug 26 2015
STATUS
approved