login
A201167
Triangle read by rows: lower triangular matrix which is inverse to the Fibonacci triangle (A139375) regarded as a lower triangular matrix.
1
1, -1, 1, 0, -2, 1, 2, 1, -3, 1, -1, 2, 3, -4, 1, 0, -3, 1, 6, -5, 1, 0, 1, -5, -2, 10, -6, 1, 0, 0, 4, -6, -8, 15, -7, 1, 0, 0, -1, 9, -4, -18, 21, -8, 1, 0, 0, 0, -5, 15, 4, -33, 28, -9, 1, 0, 0, 0, 1, -14, 19, 22, -54, 36, -10, 1, 0, 0, 0, 0, 6, -29, 15, 55, -82, 45, -11, 1, 0, 0, 0, 0, -1, 20, -48, -7, 109, -118, 55, -12, 1, 0, 0, 0, 0, 0, -7, 49, -63, -62, 191, -163, 66, -13, 1
OFFSET
0,5
LINKS
Tian-Xiao He and Renzo Sprugnoli, Sequence characterization of Riordan arrays, Discrete Math. 309 (2009), no. 12, 3962-3974.
EXAMPLE
Triangle begins
1
-1 1
0 -2 1
2 1 -3 1
-1 2 3 -4 1
0 -3 1 6 -5 1
0 1 -5 -2 10 -6
...
MAPLE
read("transforms3") ;
g := 1-x+2*x^3-x^4 ;
h := x*(1-x) ;
for n from 0 to 10 do
for k from 0 to n do
RIORDAN(g, h, n, k) ;
printf("%d, ", %) ;
end do:
printf("\n") ;
end do: # R. J. Mathar, Dec 13 2011
CROSSREFS
Cf. A139375.
Sequence in context: A294882 A048220 A182593 * A202853 A228572 A334675
KEYWORD
sign,tabl
AUTHOR
N. J. A. Sloane, Nov 27 2011
STATUS
approved