login
A199879
Continued fraction for x value of the unique pairwise intersection on (0,1) of distinct order 5 power tower functions with parentheses inserted.
2
0, 2, 2, 1, 35, 1, 2, 2, 1, 2, 5, 3, 1, 1, 45, 1, 1, 6, 11, 2, 9, 2, 2, 2, 2, 1, 1, 1, 29, 1, 3, 7, 4, 1, 7, 61, 1, 1, 2, 1, 2, 6, 2, 1, 1, 96, 11, 1, 2, 1, 1, 4, 14, 1, 10, 1, 2, 1, 7, 4, 7, 5, 10, 1, 6, 2, 2, 9, 6, 8, 3, 1, 3, 1, 3, 7, 9
OFFSET
0,2
EXAMPLE
0.42801103796472992390204...
MAPLE
with(numtheory):
f:= x-> (x^(x^x))^(x^x): g:= x-> x^(x^((x^x)^x)):
Digits:= 200:
xv:= fsolve(f(x)=g(x), x=0..0.99):
cfrac(evalf(xv), 120, 'quotients')[];
MATHEMATICA
terms = 77; digits = terms+10; xv = x /. FindRoot[x^(x^2) - 2x == 0, {x, 1/2}, WorkingPrecision -> digits]; ContinuedFraction[xv, terms] (* Jean-François Alcover, Mar 24 2017 *)
CROSSREFS
Cf. A199814 (decimal expansion), A199880 (Engel expansion).
Sequence in context: A048660 A019227 A163893 * A006828 A091752 A078078
KEYWORD
nonn,cofr
AUTHOR
Alois P. Heinz, Nov 11 2011
EXTENSIONS
Offset changed by Andrew Howroyd, Jul 03 2024
STATUS
approved